578 research outputs found

    Exploration of Small RNAs

    Get PDF
    For several decades, only a limited number of noncoding RNAs, such as ribosomal and transfer RNA, have been studied in any depth. In recent years, additional species of noncoding RNAs have increasingly been discovered. Of these, small RNA species attract particular interest because of their essential roles in processes such as RNA silencing and modifications. Detailed analyses revealed several pathways associated with the function of small RNAs. Although these pathways show evolutional conservation, there are substantial differences. Advanced technologies to profile RNAs have accelerated the field further resulting in the discovery of an increasing number of novel species, suggesting that we are only just beginning to appreciate the complexity of small RNAs and their functions. Here, we review recent progress in novel small RNA exploration, including discovered small RNA species, their pathways, and devised technologies

    Naturally occurring antisense RNA of histone H2a in mouse cultured cell lines

    Get PDF
    BACKGROUND: An antisense transcript of histone H2a that has no significant protein-coding region has been cloned from a mouse full-length cDNA library. In the present study, we evaluated this transcript by using RT-PCR and compared the expression patterns of the sense and antisense transcripts by using quantitative RT-PCR (qRT-PCR). RESULTS: This antisense RNA was expressed in three mouse cell lines. We call it ASH2a. ASH2a includes not only the complementary sequence of the transcript of Hist2h2aa2 (a replication-dependent histone H2a gene), but also that of the promoter of Hist2h2aa2. The upstream genomic sequence of the transcription start site of the ASH2a-coding gene (ASH2a) lacks both CCAAT and TATA boxes. This absence suggests that the regulation of ASH2a is different from that of the replication-dependent histone H2a genes. Findings from qRT-PCR indicated that the expression pattern of ASH2a was different from that of Hist2h2aa2. Expression of Hist2h2aa2 peaked at 2 to 4 h during S-phase, but that of ASH2a peaked at 1 h. CONCLUSION: We showed the existence of ASH2a, a histone H2a antisense RNA, in mouse cultured cells. The expression pattern of ASH2a is different from that of the sense RNA

    A novel replication-independent histone H2a gene in mouse

    Get PDF
    BACKGROUND: An uncharacterized histone H2a-coding transcript (E130307C13) has been cloned from a mouse full-length cDNA library. This transcript is encoded on chromosome 6, approximately 4 kb upstream of a histone H4 gene, Hist4h4. The proteins encoded by this transcript and the human H2afj mRNA isoform-2 have the highest amino acid similarity. In this paper, we characterize it from the expression pattern given by quantitative RT-PCR. RESULTS: Quantitative RT-PCR indicated that the gene that encodes E130307C13 (E130307C13) is regulated in a replication-independent manner, and therefore it is H2afj. Certainly, H2afj transcript lacks a stem-loop structure at the 3'-UTR but contains a poly (A) signal. In addition, its promoter region has a different structure from those of the replication-dependent histone H2a genes. CONCLUSION: The bioinformatics imply that E130307C13 is a replication-independent H2a gene. In addition, quantitative RT-PCR analysis shows that it is replication-independent. Thus, it is H2afj, a novel replication-independent H2a gene in mouse

    NF-ĪŗB activator Act1 associates with IL-1/Toll pathway adaptor molecule TRAF6

    Get PDF
    AbstractNF-ĪŗB activator 1 (Act1), also called CIKS, is a recently identified protein with NF-ĪŗB and AP-1 activation activities through its association with the IĪŗB kinase complex. We identified and confirmed that Act1 interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6); notably, Act1 binds to TRAF6 only among TRAF family proteins. The amino-terminal half of Act1 is required for its interaction with the TRAF domain. Act1-mediated NF-ĪŗB activation was inhibited by a dominant-negative mutant of TRAF6 in a dose-dependent manner, and IL-1-induced NF-ĪŗB activation was inhibited by a high level of Act1 expression. Our results suggest that Act1 is involved in IL-1/Toll-mediated signaling through TRAF6

    Comparative analysis of expression of histone H2a genes in mouse

    Get PDF
    BACKGROUND: At least 18 replication-dependent histone H2a genes are distributed in 3 Hist gene clusters on different chromosomes of the mouse genome. In this analysis we designed specific PCR primers for each histone H2a transcript and studied the expression levels and patterns using quantitative RT-PCR (qRT-PCR). In addition, we compared histone H3 K9 acetylation levels in the promoter regions of H2a genes by ChIP (chromatin immunoprecipitation) ā€“ quantitative PCR (qPCR) analysis. RESULTS: RT-PCR analysis indicated that all 20 histone H2a genes assessed in this study are expressed. The replication-dependent histone H2a genes have different expression levels but similar expression patterns. Among the 20 histone H2a genes, the expression-level of H2afz, a replication-independent gene, was highest, and that of Hist1h2aa, a replication-dependent gene, was lowest. Among 18 replication-dependent H2a genes, the expression level of Hist3h2a was highest. The ChIP-qPCR analysis showed that histone H3 K9 acetylation levels in promoter regions of both H2afz and Hist3h2a are clearly higher than that in the promoter region of Hist1h2aa. The H3 K9 acetylation level in the promoter of Hist1h2aa is similar to that in the Ī³-satellite region. CONCLUSION: These results strongly suggest that histone H3 K9 acetylation plays a role in the expression of histone genes
    • ā€¦
    corecore